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a b s t r a c t

Cities experience the urban heat island (UHI), which continue to pose challenges for humanity's
increasingly urban population. Past research has revealed that land cover composition and configuration,
along with other geographical phenomena (i.e., albedo), can explain much of the spatial pattern of UHI,
yet advances await. In response, this research was made to: (i) assess the spatial pattern of mean ambient
night temperature across 34 streetscapes in New York City (NYC); (ii) create and differentiate global and
local regression models between-natural and built streetscape characteristics- and mean ambient night
temperature; and (iii) use geographically weighted regression (GWR) to assess local patterns of corre-
lated associations. Urban canopy layer (UCL) temperatures were recorded across 34 weather stations, and
landscape metrics calculated from 0.914 m land cover data with 96% accuracy. Local Getis-Ord Gi* sta-
tistic exhibited significant spatial cold and hot spots of UHI in NYC. Global inferential tests revealed that
sky-view factor, photosynthesis activity, elevation, and road configuration were the strongest predictors
of mean ambient night temperature. Six multiple regression models were ultimately made with GWR
fitting the UHI aptly (R2¼ 65e74%). Important explanatory covariates were illustrated using local
pseudo-t statistics and linked to mean ambient night temperature, supporting the importance of GWR
for understanding local UHI interactions. Results also confirm that landscape configuration metrics are
stronger predictors of UHI than composition measures. Streetscape design, particularly road patterns and
process, requires more consideration when attempting to mitigate UHI during future sustainability
planning, urban renewal projects, and research.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Population growth and rural-to-urban migration continue to fill
already swollen cities. Due to technological advances during the
Industrial Revolution, high birth rates and low death rates that
followed, global human population continues to be positive and
strong (Wu, 2008). According to the United Nations Population
Division (2014), global urban population will increase by an extra
2.5 billion between 2010 and 2050. Recently, global populationwas
estimated to reach somewhere between 9.6 and 12.3 billion by
o, Ontario, Canada.
), yaltman2@binghamton.edu
yerson.ca (E. Vaz), forsythe@
2100 and increase thereafter with an unknown stabilization date
(Gerland et al., 2014). In 2008, a landmark was reached in human
evolution with over half of humanity living in cities; furthermore,
the number of megacities (populations over 10 million) increased
from 3 in 1975 to 19 in 2007, andwas anticipated to expand to 27 by
2025 (Crane and Kinzig, 2005; UNPD, 2008). The developing world
continues to absorb the majority of rural to urban migration; the
developed world has approached urban population saturationwith
more than 80% already living in cities (UNPD, 2014). A few countries
have already reached the milestone of 100% urban population, and
it has been fathomed that almost all of humanity could live in an
urban setting by the next century. In a prediction by Batty (2011),
global populationwas estimated to be 70% urban by 2050 and 100%
urban by 2092. Although urbanization is often correlated with
improved socioeconomic well-being, it has been simultaneously
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linked to environmental problems that degrade Earth's life-
supporting systems (Shaker, 2015). Besides direct impacts, urban-
ization metabolizes biogeochemical resources and disturbs life-
supporting ecosystems great distances from epicenters (Alberti,
2008; Carpenter et al., 2009; Weinzettel et al., 2013; Turner and
Gardner, 2015). Consequently, urbanization is likely having the
greatest direct and indirect influence on global change (Foley et al.,
2005; Liu et al., 2007; Grimm et al., 2008; Rockstr€om et al., 2009;
Pickett et al., 2011; Shaker, 2015; Forman and Wu, 2016; Ceballos
et al., 2017).

Urban heat island (UHI) is the most recognizable example of
human-induced climate alteration. A phenomenon recognized
since the early 1800s (Yang et al., 2015), but not coined until the
1940s (Balchin and Pye, 1947), UHI is the term used to depict hotter
surface and atmospheric temperatures found in urban areas
compared to their cooler suburban, exurban, and rural counterparts
(Oke, 1982, 1988; Voogt and Oke, 2003). Specifically, increased ur-
ban temperatures exist because: built-up places have increased
human-created heat; accommodation of solar radiation into urban
structures; scarcity of cool sinks such as lakes and forests; stagnant
air due to city structures; and greenhouse gases (GHG) not allowing
long-wave radiation to escape back to space (Oke, 2002). With
impacts to socioeconomic and environmental well-being, UHI has
garnered much attention from environmental and sustainability
scientists, urban and regional planners, and public health officials.
With urban expansion eminent (Batty, 2008, 2011; Seto et al.,
2012), city energy use, anthropogenic GHG, and other air pollut-
ants will increase under foreseeable population growth, rural to
urban migration, technology and consumption trends. According to
Seto et al. (2014), urban areas consume 67e76% of global energy
and are guilty for releasing 71e76% of fossil fuel-related CO2. UHI
increase consumption of cooling energy (Santamouris et al., 2015),
which surges energy demand on power plants, ultimately
increasing production of GHG that accelerate global warming
(Akbari et al., 2001; Kolokotroni et al., 2007). These energy surges
in cities have also been linked to increased concentrations of
ground-level ozone (Akbari et al., 2001; Stathopoulou et al., 2008),
particulate matter (Parrish and Zhu, 2009), and other regional at-
mospheric pollution (Sarrat et al., 2006; Schweitzer and Zhou,
2010). Residential water use and associated utility costs also in-
crease substantially when urban temperatures rise (Guhathakurta
and Gober, 2007). Evidence supports that morbidity and mortal-
ity are exacerbated in locations impacted by UHI (Norton et al.,
2015), which are anticipated to worsen with climate change
(Stone, 2012). Specifically, mortality risk for nursing home residents
(Klenk et al., 2010), infant stress, and sudden infant death syn-
drome incidents (Scheers-Masters et al., 2004) increasewith severe
heat occurrences in cities. Lastly, thermal comfort levels deteriorate
in both outdoor and indoor environments during elevated heat
events (Pantavou et al., 2011; de Abreu-Harbich et al., 2015),
contributing to heat wave disasters (Duneier, 2006; Klinenberg,
2015).

Engineering, architecture, urban planning and design, along
with a multitude of research and professional fields, continue to
develop technology and strategies for remediating the UHI. The
main mitigation goal is to reach thermal equilibrium by decreasing
heating and increasing corresponding cooling in urban areas
(Santamouris, 2014). In doing so, new temperature reducing tech-
nology have been created and implemented primarily at the
building scale, with other advancements at street and landscape
scales. Specific to buildings, increasing rooftop albedo through use
of reflective or white materials (Synnefa et al., 2008; Yang et al.,
2015) and growing native vegetation (Bowler et al., 2010; Berardi
et al., 2014) has effectively lowered urban ambient temperatures
by decreasing sensible heat flux. Reflective coatings on external
walls also increase building albedo (Karlessi et al., 2009), and
various insulating materials have decreased cooling energy needs
(Jim, 2014). At the street and landscape scales, most urban cooling
improvements have also focused on albedo, but have expanded to
include natural and human-made heat sinks (Bowler et al., 2010;
Coutts et al., 2013). A major strategy for cities is to enhance human
and ecological well-being by enlarging existing green spaces,
building new green infrastructure, restoring historic or creating
new heat sinks. Specifically, natural heat sinks can be enhanced
through connecting existing parks by riparian corridors, creating
artistic water features, enhancing tree shading, building greenways,
and implementing best management practices such as rain gar-
dens, bioretention basins, and restoring wetlands (Akbari et al.,
2001; Gill et al., 2007; Coutts et al., 2013; Jim et al., 2015; Yang
et al., 2015). Additional advances have been proposed and created
to mitigate UHI phenomenon using cool pavements. According to a
review by Santamouris (2013), reflective, permeable and water
absorbent pavements have the capacity to decrease temperatures
considerably within urban settings. Despite the aforementioned
technological advancements, no agreement exists on how best to
mitigate or eliminate UHI occurrence or associated impacts.

The structure of urban density and geometry influence surface
radiation processes, which in turn alters local and regional climate
(Wu, 2008). According to Stewart and Oke (2012), these climate
zone variations are linked to: i) built-up geometry (e.g., building
height to street width ratio); ii) land cover (e.g., composition of
urban vs. forested); iii) urban materials (e.g., glass vs. concrete vs.
steel); iv) energy metabolism (e.g., cooling waste energy). Due to
the coupling of urban streetscapes and urban climate processes,
researchers have previously employed landscape ecology metrics
for understanding UHI patterns and statistically supporting
restorative urban design strategies (e.g., Li et al., 2011; Zhou et al.,
2011; Connors et al., 2013; Kong et al., 2014; Zhou et al., 2017;
Greene and Kedron, 2018). Landscape ecology emphases two major
components of landscape: i) structure, or the spatial configuration
of its elements (i.e., land cover patch shape); and ii) function, or the
biogeophysical processes (i.e., long-wave radiation) that modify or
result from its configuration (Tischendorf and Fahrig, 2000).
Despite an established research history between landscape and
urban ambient temperature, studies have rendered inconclusive
evidence if it is land cover configuration or composition that is
more important at explaining UHI (Zhou et al., 2011, 2017; Li et al.,
2013; Connors et al., 2013). Previous findings suggest that pro-
portions of land cover can explainmuch (but by nomeans all) of the
variability in urban ambient air temperature; however, composi-
tion measures lack the detailed design information required for
creating resilient landscapes and sustainable cities. Another gap
within recent UHI literature is the primary reliance on remotely
sensed land surface temperature (LST) for investigating inference
between landscapes and UHI (e.g., Buyantuyev andWu, 2010; Zhou
et al., 2011; Deng and Wu, 2013; Zhou et al., 2014; Jenerette et al.,
2016; Zhou et al., 2017; Greene and Kedron, 2018). Although
there are many benefits for using these data, such as rapidly eval-
uating vast geographic regions, pixel size (resolution) and valida-
tion limitations remain, and often advanced remote sensing skills
are required (Myint et al., 2013; Song et al., 2014; Jenerette et al.,
2016). Lastly, although Zhou et al. (2017) recently suggested
spatial autocorrelation causes spurious inferential findings be-
tween landscapes and LST, few UHI studies acknowledged spatial
autocorrelation or employ appropriate methods (i.e., spatial
autoregression) to correct its associated errors during parametric
tests.

Improving knowledge on how to optimize urban spatial
configuration for remediating UHI remains a prerequisite for
creating sustainable cities. Urbanization provides both problems
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and solutions for sustainable development (Grimm et al., 2008;
Rosenzweig et al., 2010); consequently, the question of what
‘optimal’ urban form is (Batty, 2008) could reveal much about
reaching sustainability. Past research has revealed that land cover
composition and configuration, along with other geographical
phenomena (i.e., albedo), can explain much of the spatial pattern of
UHI yet advances await. In response, this research was made to: (i)
assess the spatial pattern of mean ambient night temperature
across 34 streetscapes in New York City (NYC); (ii) create and
differentiate global and local regression models between-natural
and built landscape characteristics- and mean ambient night
temperature; and (iii) use geographically weighted regression
(GWR) to assess local patterns of correlated associations. Using
temperatures recorded at the top of the urban canopy layer (UCL)
across 34 NYC weather stations, and landscape metrics calculated
from 0.914m land cover data with 96% accuracy, the central pur-
pose of this paper was to further investigate how urban streetscape
features combine to impact the UHI. By doing so, this research
meant to advance scientific knowledge of the complex urban
ecosystem while offering applied insight useful to engineers, ar-
chitects, urban designers, and sustainable development planners
for remediating the negative effects associated with the UHI.

2. Study area

The study area (Fig. 1) for this UHI research incorporated 34
weather stations across four of the five boroughs in New York
City (NYC), New York (40�4204600N, 74�0002100W). Located on the
Eastern Seaboard of the conterminous United States of America,
currently with a population of over eight and a half million (U.S.
Census, 2017), NYC is classified as an “Alpha þþ” World City
making it one of the most influential cities in the world. The City
has the highest population density of any major city in the United
States, with over 11,000 people per square kilometer (NYC, 2017).
NYC links its status to the amalgamation of its five: Brooklyn,
Manhattan, Queens, Staten Island, and The Bronx. NYC has
lengthy shorelines on the Atlantic Ocean, the New York Bay, Long
Island Sound, East River, and is positioned at the mouth of the
Hudson River. Most of the City's modern footprint occupies the
three islands of Manhattan, Staten Island, and Long Island, which
are separated primarily by tidal straits. Most of the natural relief
has been smoothed through urbanization processes, but eleva-
tion changes do exist, with the highest elevation recorded at
125m above sea level at Todt Hill. The City has an average
elevation of roughly 10m and has a total land area of 789 km2

(NYSG, 2010). NYC's land use is a heterogeneous mixture of:
business districts with towering new and old structures that have
increased daytime energy usage; densely populated residential
places with increased evening energy usage; less dense resi-
dential locations with one and two-family detached dwellings;
and many mixed residential and commercial areas, parks and
green spaces (Gaffin et al., 2008). Lastly, NYC has gained a green
city reputation (“Green Apple”), due to its walkability, far-
reaching transit system, and population and built density that
makes it an ideal location for studies pertaining to sustainable
urbanization (McPhearson, 2011).

Coastal megacities like NYC encounter multifaceted atmo-
spheric circulations including mixing of UHI with continental and
regional maritime air masses (Meir et al., 2013). Because of its
coastal location in the extreme southeastern portion of New York
state, the City is characterized by a marine coastal atmosphere and
warm humid subtropical climate (K€oppen-Geiger climate type:
Cfa). According to K€oppen-Geiger climate classification, NYC has a
temperate climate with warm summers, rainfall throughout the
year, and a positive water budget. Four distinct seasons occur in
NYC, with the summers considered as warm and humid and win-
ters cold and windy. Over the course of the year, temperatures
typically vary from�2�C in January to 29�C in July. Based on climate
data recorded at Belvedere Castle in Central Park from 1981 to 2010,
NYC has a mean precipitation amount of 1269mm annually (NRCC,
2018). The precipitation is relatively even throughout the year,
often coming in the form of snow in January and February but with
limited snow cover. According to Meir et al. (2013), extreme heat
events negatively influence thermal comfort and sea breezes
positively influence thermal comfort in NYC (Meir et al., 2013).
Gedzelman et al. (2003) investigated the climatology for NYC and
reported the UHI effect increased in late afternoon, is maximized
from midnight to early morning, and non-existent after dawn for a
period. In that same study, they found that NYC's UHI had an
average magnitude of 4 �C in the summer and autumn and 3 �C in
the winter and spring (Gedzelman et al., 2003). Gaffin et al. (2009)
and Rosenzweig et al. (2009) went on to depict that the UHI in NYC
has temperature differences of roughly 2.5 �C and up to 8 �C when
contrasting urban and rural locations, respectively. The power of
NYC UHI is so great that it was found to modify both summer
daytime thunderstorm formation and movement (Bornstein and
LeRoy, 1990; Bornstein and Lin, 2000). Due to recent (i.e., Hurri-
cane Sandy) and projected climate change related natural disasters
(see Stocker et al., 2013; Seneviratne et al., 2014; Dutton et al.,
2015), its restricted coastal geography, high population density,
congested streets, poor air quality, and high urban density and
geometry, it is vital that NYC become the most sustainable city in
the country (McPhearson, 2011; Hamstead et al., 2016). In sum, by
investigating how NYC streetscapes related to its UHI, sustainable
development planning insight on how to resiliently (re)urbanize at
fine scales is provided.

3. Materials and methods

3.1. Urban canopy layer temperatures

There are three types of UHI currently recognized. However,
historically the UHI was assessed across two-layers (urban can-
opy, urban boundary) of urban atmosphere (see Oke, 1976). These
two urban atmospheric stratums are commonly referred to as the
canopy layer urban heat island (CLUHI) and boundary layer urban
heat island (BLUHI). CLUHI is the layer just above the ground and
reaches to the average height of buildings, while BLUHI is above
the average height of the buildings and extends to the upper
limits of urban pollution (Oke, 1976, 2002). The third version of
the UHI is the surface urban heat island (SUHI), which is direct
surface temperatures most commonly measured through remote
sensing methods (Connors et al., 2013). Temperatures for gauging
the CLUHI are sampled between 1 and 2m above the ground
(standard screen height) using stationary sites or vehicle tra-
verse, while temperatures for assessing the BLUHI are collected
by weather towers, aircraft, or satellites (Voogt and Oke, 2003;
Stewart and Oke, 2012). Most recent studies between landscape
and UHI have used satellite-based thermal images from Landsat
ETMþ (60 m pixels) or ASTER (90 m pixels) platforms (Myint
et al., 2013; Song et al., 2014), which are not ideal for assessing
micro (~100m2) to local (~1 km2) scale landscapes. Although
requests have been made to remotely calculate micro-scale
(<10m) temperatures (Deng and Wu, 2013; Jenerette et al.,
2016), those data are not yet freely available for much of the
world. Further, LST are recorded at ground-level and are not ideal
for capturing the synergistic climate and temperature impacts of
three dimensional built and vegetated features within cities (Oke,
1988, 2002; Arnfield, 2003; Voogt, 2007). Although boundary
layer temperatures have their place in macroscale studies of UHI,



Fig. 1. Study area map of the 34 weather station locations and corresponding streetscapes across New York City. Mean ambient night temperatures, recorded at the urban canopy
layer (UCL), were interpolated into a statistical surface using ordinary kriging.
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the coarse-grained data from their collection methods were
deemed not appropriate for assessing streetscape designs.

Temperatures for this study were recorded at the top of the
urban canopy layer (UCL) across 34 intercity weather stations
from 24 September 2012 to 25 October 2012. The UCL atmo-
spheric stratum was considered best for evaluating streetscapes,
which are the extents primarily used during landscape archi-
tecture, urban design, and urban resilience planning projects.
Also, there are few recent examples of landscape configuration
studies using discrete (point-specific) ambient air temperatures
in their analyses. Using a geographically stratified sampling
technique contingent on available weather stations, UCL tem-
perature data were collected freely from the web applications:
Weather Underground (www.wunderground.com/) and
WeatherBug (www.weatherbug.com). Most of the weather sta-
tions used in this study are owned and operated by: city, state,
and federal environmental management agencies; public and
private primary and secondary schools; and public and private
colleges and universities. In doing so, the temperature measuring
equipment was deemed of high scientific quality, appropriate
collection methods (i.e., Davis Radiation Shield) used, and data
presumed to meet or exceeded standard accuracy¼± 0.5 �C and
resolution¼ 0.1 �C. Temperatures were collected twice a day, at
2pm and 11pm, over the aforementioned one-month time period.
Both day and night temperatures were then averaged across the
34 sample sites; 2pm temperatures ranged from 15.71 to 20.12 �C
(mean ± SE¼ 17.11 ± 0.17) and 11pm temperatures ranged from
13.45 to 16.08 �C (mean ± SE¼ 14.90 ± 0.10). To illustrate the

http://www.wunderground.com/
http://www.weatherbug.com
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spatial pattern of the mean night temperatures within this
dataset, a raster surface was generated from the 34 site-specific
values using the ordinary kriging spatial interpolation tech-
nique within ESRI's (2016) ArcGIS 10.4 (Fig. 1). As provided in
Appendix Table S1, ordinary kriging allows to statistically vali-
date the prediction surface produced based on its model error
statistics. For a kriging spatial interpolation model to provide
accurate predictions, the Mean Prediction Error (MPE) should be
close to 0, Average Standard Error (ASE) should be as small as
possible (below 20), and the Standardized Root-Mean Square
Prediction Error (SRMSPE) should be close to 1 (Forsythe et al.,
2016, 2018). To further assess the UHI within this dataset, night
temperatures for the warmest and coolest weather stations were
statistically contrasted and illustrated for the one-month time
period (Fig. 2). In doing so, based on a Paired Sample T-Test, a
significant difference between night temperatures for the coldest
sample location (site #22, Fig. 1; M¼ 13.45, SD¼ 3.41) and the
warmest sample location (site #23, Fig. 1; M¼ 16.09, SD¼ 3.13)
conditions was recorded; t(29)¼ 20.72, p < 0.001. Lastly, since
UHI intensity is greatest during nighttime hours (Oke, 1982,
2002), mean nighttime temperature was used as the response
(dependent) variable for this study's “hotspot” and subsequent
inferential analyses.
3.2. Streetscape characteristics

Urban landscapes investigated in this study, referred to as
streetscapes herein, were established based on Stewart and Oke
(2012) ‘local climate zones.’ From that work, air corresponding to
a local climate zone needs aminimum diameter of 400m; however,
air from adjacent local climate zones may hinder a specific site's
temperature if the corresponding landscape is too large (Stewart
and Oke, 2012). Therefore, this study's 34 streetscapes were
created using a radius distance of 250m from the aforementioned
intercity weather stations. Using the 34 streetscapes for metric
calculation and aggregation, the following eight data categories
were used for organizing more than 90 predictor variables: light
detection and ranging (LiDAR) derived metrics, urban chasm cross-
section, planimetric derived metrics, incoming solar radiation,
photosynthesis activity, land cover composition, land cover class
configuration, and landscape diversity.

Two LiDAR derived metrics were calculated for the 34 street-
scapes, which were mean elevation and Northness. LiDAR data for
Fig. 2. Night temperature distributions of (A) warmest (site #23, Fig. 1) and (B) coolest
(site #22, Fig. 1) weather stations within this study, based on data collected at 11pm
from 24 September 2012 to 25 October 2012. Box plot illustrating quartiles (whiskers
are ± 1.5 * interquartile range), confidence diamond for mean value, and shortest half
bracket.
these two predictors came from the bare-earth, hydro-flattened,
digital-elevation surface model created for New York City in 2010,
and is freely available through the NYC OpenData website (https://
opendata.cityofnewyork.us). This Digital Elevation Model (DEM)
was generated by interpolating the LiDAR ground points to create a
0.3048m (1 ft) pixel resolution seamless surface. Cell values
correspond to the natural ground elevation value above sea level,
with all buildings, trees and other surface features removed (NYC,
2017). Across the 34 streetscapes, descriptive statistics for mean
elevation above sea level were: 5.3 ft (min), 63.2 ft (mean), and
162.1 ft (max). In the Northern Hemisphere, south-facing slopes
have higher surface temperatures and decrease as the aspect moves
from south to north (Sheng et al., 2009). However, since aspect is
communicated in circular (360�) data it does not meet the
requirement for regression analysis therefore it was converted to
themeasure Northness using two steps. First, aspect was calculated
within ESRI (2016) ArcGIS 10.4, using the Raster Tools and the
aforementioned 0.3048m (1 ft) resolution LiDAR data. Second,
following Ivajn�si�c et al. (2014) lead for deriving Northness to assess
a small city's UHI in Slovenia, this solar radiation interception
metric was calculated using the following trigonometric function of
aspect (NORTHNESS ¼ cos (aspect)). In doing so, Northness values
are close to negative one (�1) when the aspect is southward, close
to zero (0) when the aspect is eastward or westward, and close to
positive one (þ1) when the aspect is northward.

The urban chasm cross-section, or so-called urban canyon, was
captured using the Sky-view factor (SVF). SVF was first suggested
by Oke (1981) and can be defined as the percentage of sky visible at
a location relative to its obstructing buildings, vegetation, and other
surface features (Oke, 1988; Upmanis, 1999; Shaker and Drezner,
2010). SVF is a valid metric for capturing built-up proportions
that influence UHI (Oke, 1981), because it captures long-wave ra-
diation escape in urban areas (Arnfield, 2003). According to Gal
et al. (2007) SVF has become a hallmark proxy of UHI because of
its applicability to urban design, urban geospatial data, and spatial
analysis techniques. In response, a sizable amount of research
supports the theoretical and quantitative link between SVF and UHI
(i.e., Eliasson, 1996; Upmanis, 1999; Grimmond et al., 2001; Li et al.,
2004; Shaker and Drezner, 2010; Debbage, 2013; An et al., 2014; de
Morais et al., 2017; Middel et al., 2018). Several techniques for
collecting SVF have been created since its conception; however, all
produce an output proportion scaled between 0 and 1 (or 0e100%)
and are well-suited for quantifying natural and built streetscape
characteristics (Gal et al., 2007). For this study, the method used by
Grimmond et al. (2001) to capture SVF using full-sky hemispheric
fish-eye lens photography was adopted. Following Shaker and
Drezner (2010), but using the upgraded camera Sony a55v DSLR
camera in conjunction with a Rokinon attachable fish-eye lens, the
complete (all built and natural features) SVF was captured at each
streetscape location (Fig. 3). Photos were taken at a height of 10 cm
above ground, at street centerline to provide a symmetrical 180-
degree view of streetscape features. Each photo contained a total
of 3,237,600 pixels, were then converted to black (buildings and
coverage) and white (sky) using Adobe Lightroom and summed
using the pixel count tool within Photoshop. The SVF, or the ratio of
“seeable” sky to streetscape features, was then computed. Lastly, it
was conceived SVF would help fleshing-out partial correlations
during the forthcoming multiple regression analyses.

Planimetric derived metrics calculated within this study's 34
streetscapes were: mean building height, mean building age, and
building density. Source data for these three predictors came from
the planimetric database created for New York City, and is freely
available through the NYC OpenData website (https://opendata.
cityofnewyork.us/). Across the five boroughs, the source imagery
for this dataset was circa 2016. All buildings with areas greater than

https://opendata.cityofnewyork.us
https://opendata.cityofnewyork.us
https://opendata.cityofnewyork.us/
https://opendata.cityofnewyork.us/


Fig. 3. Percentage visible sky (sky-view factor) as captured through fisheye photography at 89th Street and Madison, in Manhattan (A). After image processing, only 19% of the sky
was considered visible at this NYC urban chasm cross-section (B) (sample site #34, Fig. 1).
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400 ft2, without building information numbers (BIN), were
collected; albeit all buildings of any sizewith a BINwere included in
the database. Positional correctness for the planimetric data was
estimated at 95%, and created using LiDAR and/or photogram-
metrically with plus or minus two feet (þ/� 2 ft) accuracy (NYC,
2017). Building height was gaged as the difference between
building roof elevation and surface elevation (opposed to height
above sea level). Across the 34 streetscapes, descriptive statistics
for mean building height were: 18.8 ft (min), 53.2 ft (mean), and
158.5 ft (max); mean building age: 1849 (min), 1920 (mean), and
1975 (max); and number of buildings: 15 (min), 319 (mean), and
726 (max). Building density was created by normalizing the num-
ber of buildings by streetscape area, which decreased sampling bias
and errors related to the modifiable area unit problem (MAUP).

Photosynthesis activity was included by using the mean
normalized difference vegetation index (NDVI) for each of the 34
streetscapes. NDVI is calculated from the visible and near-infrared
light reflected by vegetation, with healthy vegetation absorbing
most of the visible light that hits it and reflecting a larger amount of
the near-infrared light (NASA, 2017). Two Landsat 7 Enhanced
Thematic Plus (ETMþ) images taken on October 5 and October 21,
2012were downloaded, which falls between Sept. 24, 2012 and Oct.
25, 2012. Since the scan line corrector (SLC) malfunctioned after
May 31, 2003, numerous gaps exist on the two Landsat
ETM þ images. Three steps are processed to derive average NDVI
values for the 34 streetscape samples. First, NDVI was computed
with the two SLC-off images, respectively. It is computed as a ratio-
of the difference of the near infrared band and the red band- and
the sum of these two bands. For Landsat 7 images, the NDVI
equation can be written as:

NDVI ¼ (Band 4 e Band 3) / (Band 4 þ Band 3)

Where Band 4 is near-infrared (0.76e0.90 mm) and Band 3 is red
(0.63e0.69 mm). Computations of NDVI for a specific pixel will
produce a value that ranges from minus one (�1) to plus one (þ1);
however, a zero equates to no vegetation (no green leaves) and
close to þ1 (0.8e0.9) specifies the maximum density of productive
green vegetation (NASA, 2017). Second, a simple method was used
to fill the gaps. Specifically, the available NDVI pixels from the
image taken on October 21, 2012 were assigned to the NDVI map
taken on October 5, 2012. Third, after deriving an NDVI map of circa
October 2012, the mean NDVI value of all pixels within each of the
34 streetscapes was calculated.

Incoming solar radiation impacts local thermal dynamics (Jahani
and Mohammadi, 2018) and was calculated for each of the 34
streetscapes using the Area Solar Radiation tool within Spatial
Analyst extension in ESRI (2016) ArcGIS 10.4. This tool calculates
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incoming solar radiation into a raster surface for a user specified
time-frame. Global radiation pixel values are the total amount of
incoming solar insolation for each sample site of the input surface
by adding diffuse and direct insolation (ESRI, 2016). A 10-m digital
elevation model (DEM), retrieved from the U.S. Geological Survey's
National Elevation Database (NED; 2015), was used as the study
area's input surface. The spatial resolution was maintained at 10-m
and radiation pixel-values were averaged for each of the 34
streetscapes. To correspond with the temperature data collected,
the timeframe inputted for was 24 September 2012 to 25 October
2012. The mean latitude of the study area, 40.78�N, was automat-
ically calculated by the Area Solar Radiation tool. The output radi-
ation raster is floating-point type and expressed in watt hours per
square meter (WH/m2).

Land cover composition, land cover class configuration, and land-
scape diversity metrics were calculated for each streetscape using
the fine spatial and categorical resolution land cover data set
created for New York City (NYCPR, 2010; MacFaden et al., 2012).
This 2010 land cover raster data has a minimum mapping unit of 3
square feet (0.914m resolution) and was evaluated to have an
overall accuracy of 96%, which both remain originalities within the
UHI literature. This high-resolution land cover data set was classi-
fied into seven land cover categories: (1) tree canopy, (2) grass/
shrub, (3) bare earth, (4) water, (5) buildings, (6) roads, and (7)
other paved surfaces. To derive such fine resolution and heightened
accuracy, Object-Based Image Analysis (OBIA) was collaboratively
employed by the New York City Urban Field Station and University
of Vermont's Spatial Analysis Laboratory to create this data set
using 2010 LiDAR data, 2008 4-band orthoimagery, and other
discrete GIS data including ballfields, building footprints, parking
lots, railroads, railroad structures, roads, and surface water. The
land cover composition (percentages), configuration, and landscape
diversity, metrics were processed using the freeware FRAGSTATS
(ver. 4), which computes pattern metrics of land use and land cover
(McGarigal et al., 2012). Specifically, compositions were computed
for all seven land cover classes; however bare earth, water, and
other paved surfaces were omitted from land cover class configu-
ration calculation due to lowpresence or statistical insignificance of
percentages across the 34 streetscapes. The seven land cover cat-
egories for the 34 streetscapes yielded the following compositions:
buildings (33.8%), other paved surfaces (23.3%), tree canopy (20.3%),
roads (16.0%), grass/shrub (6.5%), bare earth (0.1%), andwater (0.1%)
(percentages from this study). Since no winning set of landscape
ecology metrics has been recognized for assessing landscape
structure (Riitters et al., 1995; Wagner and Fortin, 2005), 25 area-
weighted class configuration metrics were processed for each of
the four land cover classes tree canopy, grass/shrub, buildings, and
roads. Lastly, two landscape diversity measures, Shannon's di-
versity index (SHDI) and Shannon's evenness index (SHEI), were
computed for each of the 34 streetscapes.

3.3. Data analysis

To fulfill the three objectives of this paper, a five-step spatial
analysis was fashioned to evaluate the geographical pattern of
NYC's UHI across the study area, and to statistically test its rela-
tionship to natural and built streetscape characteristics. Tomeet the
Gaussian distribution prerequisite for parametric tests, variables
were transformed using common techniques (i.e., log, logit,
arcsine) to improve their normality where relevant. The Shapiro-
Wilk normality test was computed in the statistical software JMP
(ver. 13; SAS, 2016) to establish if transformation was needed, and
which mathematical operation aided in reaching Gaussian fre-
quency. Justification and specific details of the five-step method are
outlined in the following paragraphs of this section.
(1) First, exploratory spatial data analysis (ESDA) was used to
evaluate the level of spatial autocorrelation of mean ambient
night temperature and the over 90 streetscape predictors of
this study. ‘Spatially close things are more similar than
remote things’ is a phenomenon known as the First Law of
Geography (Tobler, 1970). This geographical fact is translated
as a variable's level of spatial autocorrelation, which is
further deduced as a variable's univariate level of numerical
dependence (cross-correlation, non-randomness, non-sta-
tionarity) based on its geographical position in reference to a
predetermined number of its neighboring values. Spatial
autocorrelation is commonplace to socio-economic and
environmental data, and can be an advantage and disad-
vantage when investigating spatial patterns of inference. A
benefit of spatial non-randomness is that indicator patterns
can be statistically evaluated and contrasted to urban resil-
ience and sustainability (Shaker, 2015). However, the exis-
tence of spatial autocorrelation defies the requirement of
randomness thus global parametric statistics (i.e., ordinary
least squares; OLS regression) may not be suitable for
investigating inferential associations (Lichstein et al., 2002;
Dormann et al., 2007). With geospatial technology and new
spatial analysis progressing, by the end of 20th century it was
argued that all previous spatially-related research now take
spatial autocorrelation into account (Lennon, 2000). In this
study, both global and local versions of ESDA were used to
evaluate spatial non-stationarity using ESRI (2016) ArcGIS
10.4 Spatial Analyst Tools. Specifically, Global Moran's I-test
(Moran, 1950) was used to appraise geographical non-
stationarity of all variables, and Getis-Ord Gi* (Getis and
Ord, 1992) was used to conduct a “hot spot” analysis of
mean ambient night temperature. For both Global Moran's I
and Getis-Ord Gi* tests, the distance parameter of 8 km was
chosen for the Incremental Spatial Autocorrelation tool
within ArcGIS, with conceptualization of spatial relation-
ships Euclidean inverse distance weighting (IDW). The
Global Moran's I equation can be described as:

I ¼ n
so

Pn
i¼1

Pn
j¼1wi;jzizjPn
i¼1z

2
i

where zi is the deviation of an attribute for item I from its mean (zi �
X); wi;j is the spatial weight between item i and j; n is equal to the
total number of items; and s0 is the aggregate of all the spatial
weights. Note that Getis-Ord Gi* is a local index of spatial associ-
ation (LISA) because it illustrates where the significant spatial
clusters are located by returning a z-score for each attribute being
evaluated. For statistically significant negative z-scores, the smaller
the z-score, the stronger the clustering of low values (cold spot); for
positive z-scores, the larger the z-score, the stronger the clustering
of high values (hot spot; ESRI, 2016). The Getis-Ord Gi* test can be
described as:
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where xj is the attribute value for item j; wi;j is the spatial weight
between item i and j; n is equal to the total number of items; and:

X ¼
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The G*
i statistic is a z-score so no additional computations are

necessary (ESRI, 2016). Lastly, to help illustrate the spatial patterns
of NYC's UHI, an interpolated surface was created from the Getis-
Ord Gi* z-scores using the IDW method (Fig. 4).

(2) Second, bivariate relationships between-natural and built
streetscape characteristics- and mean ambient night tem-
perature were explored using two techniques. Initially, a
two-tailed Pearson's Product-Moment Correlation test (r)
Fig. 4. Local index of spatial associations (LISA) illustration of mean ambient night temp
neighborhood distance parameter was investigated and set to 8 km; cold and hot spots w
distance weighting (IDW).
was used to evaluate associations between mean ambient
night temperature and the 90 þ explanatory streetscape
particularities. Successively, bivariate ordinary least squares
(OLS) regression was utilized to create scatterplots, visualize
slopes, and attain predicted expressions of key statistically
significant relationships. Pearson's correlation coefficients
and OLS's coefficient of determination (R2) both range from 1
to �1, with values closer to 1 indicating stronger predictive
associations. They are two of the most common global
inferential tests for understanding bivariate interactions, and
a P-value complements the coefficient score indicating its
statistical significance. Thirty-six natural and built
erature across the 34 study area streetscapes using the Getis-Ord Gi* statistic. The
ere illustrated using z-scores at sample sites and interpolated z-scores using inverse
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characteristics (Data S1) had at least marginally significant
Pearson's correlationswithmean ambient night temperature
across the 34 streetscapes (P< 0.10, Table 1). Lastly, to
eliminate unsound bivariate regressions, the Shapiro-Wilk
test was employed to assess the normality of residuals.
Twelve OLS bivariate regressions between-natural and built
streetscape characteristics- and mean ambient night tem-
perature were visualized into scatterplots (P< 0.05, Figs. 5
and 6). The statistical program JMP (ver. 13; SAS, 2016) was
utilized here.
Table 1
Global spatial autocorrelations for all study variables using Global Moran's I-test; Pears
night time temperature and all significant (P< 0.10) landscape form predictors across Ne

Global Moran's I

Dependent variable
Mean ambient night temperature 0.289

LiDAR derived metric y
Mean elevation 0.236

Urban chasm cross section z
Sky-view factor 0.258

Land cover composition z
Tree canopy, percent 0.325
Grass/shrub, percent 0.044
Buildings, percent 0.054
Roads, percent 0.115

Tree canopy class configuration z
Total class area (CA) 0.334
Largest patch index (LPI) 0.470
Area-weighted patch area distribution 0.468
(AREA_AM)
Area-weighted mean of shape index (SHAPE_AM) 0.374
Area-weighted mean of fractal area dimension 0.334
(FRAC_AM)
Area-weighted mean of core area distribution 0.459
(CORE_AM)
Area-weighted mean of core area index (CAI_AM) 0.472
Area-weighted mean of proximity index 0.242
distribution (PROX_AM)
clumpiness index (CLUMPY) 0.326
Percentage of like adjacencies (PLADJ) 0.340
Connectance index (CONNECT) 0.003
Patch cohesion index (COHESION) 0.340
Landscape division index (DIVISION) 0.075
Effective mesh size (MESH) 0.278
Aggregation index (AI) 0.343

Grass/shrub class configuration z
Total class area (CA) 0.093
Patch density (PD) 0.074
Area-weighted mean of fractal area ̶̶0.001
dimension (FRAC_AM)
Percentage of like adjacencies (PLADJ) 0.152
Aggregation index (AI) 0.154

Buildings class configuration z
Total class area (CA) 0.042
Percentage of like adjacencies (PLADJ) 0.032
Patch cohesion index (COHESION) 0.279

Roads class configuration z
Total class area (CA) 0.055
Largest patch index (LPI) 0.102
Landscape shape index (LSI) 0.092
Area-weighted mean of shape index (SHAPE_AM) 0.084
Area-weighted mean of fractal area dimension 0.064
(FRAC_AM)
Patch cohesion index (COHESION) 0.064

Photosynthesis activity z
Mean normalized difference vegetation index 0.300
(NDVI)

Symbol designations: y Light Detection and Ranging (LiDAR) data has 0.3048m (1 ft) pixel
corresponding temperature sample site.
Technical notes: Landscape ecology metrics computed based on land cover data with 0.914
for isolation/proximity metrics was 20 m; edge depth for core area calculations was 5 m.S
symbols: *** < 1%, ** < 5%, * < 10% chance random pattern.A Pearson's correlation coe
confidence level.See Leit~ao et al. (2012) and McGarigal et al. (2012) for landscape ecolog
(3) Third, to achieve the second and third objectives of this
research, this study assessed synergies of natural and built
streetscape characteristics through multiple regression
analysis. From the previous Pearson's correlation test, 28 of
the 36 streetscape predictors were included in the explor-
atory multiple regression analysis. Eight variables were
removed because they were highly skewed and/or lacked
variability. By means of multi-model selection framework
(Burnham and Anderson, 2003; Diniz-Filho et al., 2008),
within the freeware Spatial Analysis in Macroecology (SAM)
on product-moment correlation coefficients (two-tailed) between average ambient
w York City streetscapes (n¼ 34).

z-score P-value Pearson's r P-value

2.675*** 0.007

2.187** 0.029 ̶̶ 0.523 0.002

2.385** 0.017 ̶̶ 0.719 <0.001

3.072*** 0.002 ̶̶ 0.389 0.023
0.631 0.528 ̶̶0.331 0.056
0.699 0.484 0.373 0.030
1.245 0.213 0.337 0.052

3.052*** 0.002 ̶̶0.328 0.058
4.398*** <0.001 ̶̶ 0.397 0.020
4.426*** <0.001 ̶̶ 0.404 0.018

3.507*** <0.001 ̶̶ 0.397 0.020
3.080*** 0.002 ̶̶ 0.347 0.044

4.360*** <0.001 ̶̶ 0.412 0.015

4.144*** <0.001 ̶̶ 0.354 0.040
2.242** 0.025 ̶̶0.334 0.053

2.933*** 0.003 ̶̶0.307 0.077
3.082*** 0.002 ̶̶ 0.371 0.031
0.293 0.769 ̶̶0.333 0.054
3.074*** 0.002 ̶̶0.326 0.060
1.366 0.172 0.450 0.008
3.057*** 0.002 ̶̶ 0.45 0.008
3.098*** 0.002 ̶̶ 0.375 0.029

1.073 0.283 ̶̶0.294 0.091
0.890 0.373 ̶̶0.321 0.064
0.240 0.810 0.323 0.062

1.510 0.131 ̶̶0.314 0.070
1.527 0.127 ̶̶0.311 0.074

0.598 0.550 0.403 0.018
0.531 0.596 0.288 0.099
2.721*** 0.007 0.347 0.045

0.724 0.469 0.366 0.033
1.107 0.268 0.316 0.069
1.054 0.292 0.302 0.082
0.935 0.350 0.437 0.010
0.771 0.441 0.488 0.003

0.785 0.432 0.456 0.007

2.802*** 0.005 ̶̶ 0.551 0.001

resolution; z associated variables calculated for a 250-m radius streetscape from its

4 m (3 ft) pixel resolution, and using queen contiguity (8-neighborrule); search area
patial autocorrelation was determined using a threshold distance of 8 km; associated
fficient in bold depicts a statistically significant relationship greater than the 95%
y metric details and equations.



Fig. 5. Significant bivariate relationships between-mean ambient night temperature- and mean ambient day temperature, elevation, sky-view factor (SVF), mean normalized
difference vegetation index (NDVI), and land cover class composition metrics (P< 0.05; n¼ 34).
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(ver. 4; Rangel et al., 2010), the 28 natural and built street-
scape characteristics were combined to test all possible
global multiple regression models (i.e., 268,435,455) for
predicting mean ambient night temperature. The multi-
model selection framework computes the Akaike weight
(wi) of each model; wi is an Akaike information criterion
(AIC)-derived metric that grades the likelihood model i is the
best predictive model amid all conceivable models created
(Burnham and Anderson, 2003). The six prominent models
were picked because of their overall fitness using coefficient
of determination (R2) and corrected (AICc). According to
Fotheringham et al. (2004), AICc (Akaike, 1978) is an
improved metric of model fitness and estimate of reality. He
also noted that a ‘serious’ distinction between two models is
when AICc values diverge by at least three (Fotheringham
et al., 2004). Directionality of covariates, and to evaluate
their relative impact (rank effects) on mean night tempera-
ture, standardized coefficients (betaweights; b) were used to
gauge the streetscape predictors across the six multiple re-
gressions. To assess multicollinearity the variance inflation
factor (VIF) was recorded for each model. VIF > 10 explicitly
denotes multicollinearity violations; VIF > 2.5 denotes
conceivable multicollinearity issues. Lastly, the Shapiro-Wilk
normality examination was applied to assure independence
of model residual and thus randomly distributed errors. The
six global multiple regression models (Table 2) were reas-
sessed in the proceeding step using local multiple regression.

(4) Fourth, to fully achieve the second and third objectives of this
research, geographically weighted regression (GWR;
Fotheringham et al., 2003) was employed to assess local
patterns of correlated associations. Conventional global
regression (i.e., OLS) should only be utilized when attribute
independence and spatial randomness is guaranteed (Shaker
et al., 2017). These requirements are often hard to meet,
especially with weather and climate data where many pro-
cesses are non-stationary (Szymanowski and Kryza, 2012).
Therefore, a local inferential statistical method such as GWR
is more appropriate when spatially non-random variables
are under investigation. GWR, a refinement to global
regression, includes neighboring effects through a distance
decay-weighted philosophy that explicitly deals with the
spatial non-stationarity of inferential relationships



Fig. 6. Significant bivariate relationships between-mean ambient night temperature- and land cover class configuration metrics (P< 0.05; n¼ 34).
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(Fotheringham et al., 2004). Specifically, GWR is a non-
parametric modeling method that applies a series of locally
linear regressions to generate estimates for every sample
across the study area through a spatial drift of neighboring
observations (Fotheringham et al., 2003;Wheeler, 2014). The
number of neighbors, or spatial weighting, is captured via
spatial kernel function depending on data type and freely
available software now allows for Logistic, Poison, or
Gaussian (Nakaya et al., 2014). Since GWR operates using
neighboring observations it is not suitable for extrapolation
beyond its study area that it was established (Shaker and
Ehlinger, 2014); however, GWR models are considered
more suitable for local descriptive and predictive reasons
(Foody, 2003). Since GWR uses a spatial drift method of
selecting nearby information through a moving window, it
can reduce or eliminate errors produced by spatial autocor-
relationwhen inferential modeling (Kupfer and Farris, 2007).

Regarding previous inferential analyses of UHI, most studies
have employed global statistical methods, which do not account for
spatial autocorrelation and fail at deciphering local inferential
patterns appropriately. Thus, GWR was utilized to remediate errors
caused by spatial non-stationarity, and map local patterns of
statistically significant streetscape predictors. Within the SAM
software (ver. 4; Rangel et al., 2010), the six previously created
global multiple regressions were reassessed by GWR modeling
module. To aid in understanding the importance of the covariates
across the GWR models, all streetscape predictors used in the OLS
multiple regression models were standardized using a z-trans-
formation to set all variables to a mean of 0 and variance of 1.
Specifically, GWR was employed using an adaptive Gaussian kernel
and the Golden Section Search, which selects the optimal number
of neighbors (spatial weighting; kernel bandwidth) for minimizing
the model's AICc. A typical GWR model is described as
(Fotheringham et al., 2003):

yi ¼ b0ðui ; viÞ þ
X
k

bkðui; viÞxik þ εi

where ðui ; viÞ signifies the coordinates of the response variable y;
where ðui ; viÞ signifies the coordinates of i; b0 and bk embody the
local estimate intercept and influence of predictor k at location i,
respectively; and ε is the random error term to account for
changing values across space. That said, the key to the GWR
equation is locations closer to i have a stronger effect on the
calculation of bkðui; viÞ than locations further away (Rybarczyk,
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2018). The most commonly used Gaussian distance-decay kernel
function is described as:

wij ¼ exp
�
� dij

q2

�

where dij is the distance between observation i and j and q is the
bandwidth. To assure model fitness, Global Moran's I test (Moran,
1950) was used to appraise spatial autocorrelation for each of the
GWRmodel's residuals. Akin to the OLS multiple regression, the six
GWR models were contrasted based on their overall fitness using
corrected (AICc) and coefficient of determination (R2). Once non-
stationarity was tested for, and model fitness set, local regression
statistics and parameter estimates were illustrated for the most
informative predictive model.

(5) Fifth, a two-tailed Pearson's Product-Moment Correlation (r)
matrix was employed as an ex post facto collinearity evalu-
ation of key statistically significant streetscape predictors of
mean night temperature. Pearson's correlation is often used
as a data reduction technique to decrease the likelihood of
multicollinearity prior to creating multiple regression
(Dormann et al., 2013). However, in doing so, important
knowledge regarding relationships between natural and
built streetscape characteristics would not be disseminated.
To help elucidate scientific understanding of the complex
urban ecosystem, and reduce the negative effects associated
with the UHI, scientific knowledge dissemination is para-
mount for the sustainable development process. For inter-
pretation purposes, correlation coefficients were organized
into very positive (>0.75), positive (0.75e0.50), neutral (0.50
to �0.50), negative (�0.50 to �0.75), or very negative
(<e0.75). The JMP software (ver. 13; SAS, 2016) was used
again here.

4. Results

4.1. Exploratory spatial data analysis

Taking the spatial relationships of the 34 streetscapes into ac-
count, Global Moran's I-test revealed varying levels of spatial non-
stationarity for the dependent variable and 36 statistically signifi-
cant streetscape predictors (Table 1). 15 of the aforementioned
natural and built characteristics, and the response variable, had less
than 1% chance of occurring randomly using the previously estab-
lished 8 km distance threshold. Specifically, the response variable's
(mean ambient night temperature) spatial frequency recorded a
Moran's I score and z-score of 0.29 and 2.68, respectively. Three
streetscape predictors also rendered spatial patterns with less than
a 5% chance of occurring randomly.

When examining the local distribution of mean ambient night
temperature across the 34 sample streetscapes of New York City,
the Getis-Ord Gi* statistic illustrated one statistically significant
“hot spot” and statistically significant one “cold spot” (Fig. 4).
The large and contiguous hot spot takes place over the south-
central part of the study area. The most significant hot spot
area, at the 1% level, ranged from the northern horn of Brooklyn
(Crown Heights to Greenpoint) in the south to the East River
border of Queens in the north (College Point, East Elmhurst and
LaGuardia Airport). Spanning perpendicular to west, the hot spot
stretched to the Hudson River in the Upper West Side neigh-
borhood of Manhattan, south through Midtown and the East
Village. The significant cold spot area, at the 1% level, was found
in the northwest area of the Bronx. Specifically, the cold spot
ranging from Bronx Zoo in the southeast, across to Inwood Hill
Park in the southwest, and northward to North Riverdale and
Van Cortlandt Park. Although the west and east margins of NYC's
UHI cannot be delineated through this hot spot analysis, it does
illustrate the central area of concern for this anthropogenic
climate alteration.

4.2. Bivariate analyses

Of the over 90 natural and built streetscape characteristics
investigated as explanatory variables of mean ambient night tem-
perature, 21 of 36 streetscape predictors had statistically significant
relationships greater than the 95% confidence level (Table 1). Using
the eight data categories for organizing streetscape predictors from
the methods section, 16 of the 21 statistically significant bivariate
relationships came from land cover class configuration variables.
From the remaining five significant bivariate relationships, two
were grouped into the land cover composition category, while
LiDAR derived metrics, urban chasm cross-section, and photosyn-
thesis activity all had one variable. The three data categories-
planimetric derived metrics, photosynthesis activity, and land-
scape diversity-did not render bivariate statistical significance us-
ing Pearson's correlation test. Within the land cover class
configuration data category, ten of the 16 statistically significant
bivariate relationships were tree canopy class configuration met-
rics, four were road class configuration metrics, and two were
building class configuration metrics. Since 25 configuration metrics
were originally calculated for each of the four land cover class, these
preliminary findings are suggestive of tree canopy configuration
being more important to UHI than composition and configuration
of the other land cover types. That said, overall the two strongest
positive predictors of mean ambient night temperature were area-
weighted mean of fractal area dimension (FRAC_AM) for roads
(r¼ 0.49, P¼ 0.003) and patch cohesion index (COHESION) for
roads (r¼ 0.46, P¼ 0.007). Overall, the two strongest negative
predictors of mean ambient night temperature were sky-view
factor (SVF; r¼�0.72, P< 0.001) and mean normalized difference
vegetation index (NDVI; r¼�0.55, P¼ 0.001). Other notable posi-
tive explainers of mean ambient night temperature were: land-
scape division index (DIVISION) for tree canopy (r¼ 0.45,
P¼ 0.008); area-weighted mean shape index (SHAPE_AM) for
roads (r¼ 0.44, P¼ 0.010); total class area (CA) for buildings
(r¼ 0.40, P¼ 0.018); percent buildings (r¼ 0.37, P¼ 0.030); and
patch cohesion index (COHESION) for buildings (r¼ 0.35,
P¼ 0.045). Other notable negative explainers of mean ambient
night temperature were: mean elevation (r¼�0.52, P¼ 0.002);
effective mesh size (MESH) for tree canopy (r¼�0.45, P¼ 0.008);
area-weighted mean of core area distribution (CORE_AM) for tree
canopy (r¼�0.41, P¼ 0.015); area-weighted mean of shape index
(SHAPE_AM) for tree canopy (r¼�0.40, P¼ 0.020); and percent
tree canopy (r¼�0.39, P¼ 0.023).

The OLS bivariate analysis resulted in twelve statistically sound
regression scatterplots (P< 0.05, Figs. 5 and 6), which help to
explain relationships between streetscape characteristics andmean
night temperature. Overall, mean ambient night temperature was
best explained by SVF (R2¼ 0.52, P< 0.001), and was negatively
associated (b¼�0.72). The next two strongest negative predictors
were mean NDVI (R2¼ 0.30, P< 0.001) and mean elevation
(R2¼ 0.27, P¼ 0.002). Regarding land cover class configuration
metrics, FRAC_AM for roads was the best predictor of mean night
temperature (R2¼ 0.24, P¼ 0.003), and was positively associated
(b¼ 0.49). SHAPE_AM for roads also had a reasonable prediction of
ambient night temperature (R2¼ 0.19, P¼ 0.010), and was posi-
tively associated (b¼ 0.44). Note that this study revealed an ex-
pected positive (b¼ 0.62) and highly significant relationship
between mean day and night temperatures (R2¼ 0.38, P< 0.001).



Table 2
Ordinary least squares (OLS) regression modeling results, standardized coefficients, and individual p-values of independent variables significantly related to average ambient
night time temperature across 34 New York City streetscapes.
[Covariate values are OLS regression standardized coefficients; values enclosed in parentheses are individual p-values. Independent model variables have been transformed to
meet normality.].

Statistical measures and independent variables Models

Statistical measures Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Akaike's Information Criterion (AICc) 27.677 28.935 43.013 43.804 45.605 46.522
R-Square 0.732 0.698 0.614 0.605 0.583 0.572
F 27.263 35.815 11.527 11.096 10.149 9.686
Model P-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Variance Inflation Factor (VIF) max value 1.054 1.020 1.434 1.449 1.458 1.272

Independent variables
OLS regression standardized constant 0.000

(<0.001)
0.000 (<0.001) 0.000 (<0.001) 0.000 (<0.001) 0.000 (<0.001) 0.000 (<0.001)

LiDAR derived metric y
Mean elevation ̶̶0.433

(<0.001)
̶̶0.430 (<0.001) ̶̶0.346 (<0.001) ̶̶0.398 (0.005) ̶̶0.408 (0.006) ̶̶0.508 (<0.001)

Urban chasm cross section z
Sky-view factor ̶̶0.624

(<0.001)
̶̶0.658 (<0.001) – – – –

Planimetric derived metric z
Mean building height – – 0.406 (<0.001) 0.550 (<0.001) 0.520 (<0.001) 0.398 (0.006)

Tree canopy class configuration z
Area-weighted mean of shape index (SHAPE_AM) – – – ̶̶0.335 (0.024) – –

Largest patch index (LPI) – – – – ̶̶0.285 (0.059) –

Buildings class configuration z
Total class area (CA) – – – – – 0.221 (0.094)

Roads class configuration z
Landscape shape index (LSI) 0.187 (0.062) – 0.477 (<0.001) 0.449 (0.002) 0.448 (0.002) 0.411 (0.006)
Photosynthesis activity z –

Mean normalized difference vegetation index – – ̶̶0.352 (0.017) – – –

(NDVI)

Symbol designations: y Light Detection and Ranging (LiDAR) data has 0.3048m (1 ft) pixel resolution; z associated variables calculated for a 250-m radius streetscape from its
corresponding temperature sample site, and dash, –, indicate no statistically significant relationship observed.
Technical notes: Landscape ecology metrics computed based on land cover data with 0.9144m (3 ft) pixel resolution (NYC, 2015), and using queen contiguity (8-neighbor rule);
search area for isolation/proximity metrics was 20m; edge depth for core area calculations was 5m.
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The two global bivariate techniques used in this study, Pearson's
correlation test and OLS regression, corroborated that NYC's UHI is
affected by both natural and built streetscape characteristics.
Additionally, these global bivariate results affirmed that landscape
configuration metrics are stronger predictors of UHI than compo-
sition measures.

4.3. Global and local multiple regressions

The multi-model selection framework resulted in six OLS mul-
tiple regression models for explaining mean ambient night tem-
perature across the 34 NYC streetscapes (Table 2). This method for
selecting multiple regressions disregarded 20 of the 28 natural and
built streetscape characteristics. Eight predictors were employed
across the six distinct global regression models to explain between
57 and 73% of the variation of mean night temperature as expressed
by their R2 values. Models were ranked and numbered based on
their AICc values, with Model 1 best-fitting (AICc¼ 27.68)
increasing to Model 6 as worst-fitting (AICc¼ 46.52). Maximum VIF
values ranged between 1.02 and 1.46 across the six models,
thereforemulticollinearity errors linked to covariates were deemed
absent. Model 2 included two independent variables; Model 1 used
three independent predictors; while the other four models incor-
porated four independent parameters. The Shapiro-Wilk test
divulged normality of residuals and thus randomly dispersed errors
across all six global multiple regressions.

The six distinct OLS models allowed for understanding separate
and synergistic influences of natural and built streetscape charac-
teristics on mean ambient night temperature. Across the six global
multiple regressions, mean elevation was the only constant pre-
dictor of mean ambient night temperature. This covariate had an
anticipated negative relationship with temperature and was sig-
nificant well above the 99% confidence level for each model.
Landscape shape index (LSI) for roads was the second most present
parameter for predicting mean ambient night temperature, with
consistent positive directionality and representation in five of the
six models. In tandem with other predictors, this important co-
variate was significantly above the 99% confidence level across four
models and marginally significant at the 90% confidence level for
one model. Mean building height was the third most present
parameter for predicting mean ambient night temperature, with
consistent positive directionality and representation in four of the
six models. When combined with other independent variables this
covariate was well above the 99% confidence level across the four
models. Mean building height was considered the second strongest
predictor of mean night temperature across all models as signified
by its standardized beta coefficients. Sky-view factor was the fourth
most present parameter with representation in two of the six
models and was negatively directed in both models. Overall, sky-
view factor was considered the strongest predictor of mean night
temperature across all models as expressed by its standardized beta
coefficients. The following three parameters were negatively
associated with mean ambient night temperature and appeared in
one model: mean normalized difference vegetation index (NDVI),
area-weighted mean of shape index (SHAPE_AM) for tree canopy,
and largest patch index (LPI) for tree canopy. Lastly, total class area
(CA) for buildings appeared in one multiple regression; it was
positively associated with mean ambient night temperature but
exhibited only marginal statistical significance.

The GWR analysis maintained each multiple regression's fitness
established during the preceding global OLS technique, and
corroborated inferential findings across those six models. It is



Table 3
Geographically weighted regression (GWR) parameter estimates for multiple regressions between-significant landscape predictors- and average ambient night time tem-
perature across 34 New York City streetscapes.
[Independent model variables have been transformed to meet normality, and standardized to set the mean at 0 and variance equal to 1.].

Statistical measures and independent variables Models

Diagnostic Statistics Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Akaike's Information Criterion (AICc) 28.084 29.592 40.717 42.734 43.933 44.934
R-Square 0.741 0.703 0.715 0.653 0.675 0.662
Adaptive Kernel Neighbors 90.000% 90.000% 53.636% 83.075% 59.418% 61.211%
Sigma 0.103 0.114 0.127 0.146 0.142 0.147
Effective Number Parameters 4.564 3.474 7.239 6.026 6.989 6.884
F 23.663 29.272 10.776 10.473 9.38 9.013
Model P-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Residuals Global Moran's I z-score ̶̶0.807 x ̶̶0.315 x 1.128 x 0.815 x 0.971 x 1.003 x

Local Regression Parameter Descriptive Statistics: (Median)
Constant 14.908 14.912 14.965 14.928 14.963 14.955

LiDAR derived metric y
Mean elevation ̶̶0.254 ̶̶0.251 ̶̶0.154 ̶̶0.213 ̶̶0.200 ̶̶0.284

Urban chasm cross section z
Sky-view factor ̶̶0.372 ̶̶0.389 – – – –

Planimetric derived metric z
Mean building height – – 0.168 0.299 0.244 0.200

Tree canopy class configuration z
Area-weighted mean of shape index (SHAPE_AM) – – – ̶̶0.205 – –

Largest patch index (LPI) – – – – ̶̶0.176 –

Buildings class configuration z
Total class area (CA) – – – – – 0.111

Roads class configuration z
Landscape shape index (LSI) 0.098 – 0.212 0.230 0.200 0.194

Photosynthesis activity z
Mean normalized difference vegetation index – – ̶̶0.191 – – –

(NDVI)

Symbol designations: y Light Detection and Ranging (LiDAR) data has 0.3048m (1 ft) pixel resolution; z associated variables calculated for a 250-m radius streetscape from its
corresponding temperature sample site; x spatial pattern of residuals was statistically random based on established distance of 8 km, and dash, –, indicate no statistically
significant relationship observed.
Technical notes: Landscape ecologymetrics computed based on land cover data with 0.9144m (3 ft) pixel resolution (NYC, 2015), and using queen contiguity (8-neighbor rule);
search area for isolation/proximity metrics was 20m; edge depth for core area calculations was 5m.
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important to note, when using local regression modeling methods,
which covariates had spatial autocorrelation. Of the eight explan-
atory variables previously employed across the six multiple
regression models, only total class area (CA) for buildings was
spatially random. Seven independent streetscape predictors, and
the dependent variable mean ambient night temperature, were
spatially autocorrelated based on the foregoing Global Moran's I-
test. The six GWR models explained between 65% and 74% of the
variation of mean ambient night temperature (Table 3). Based on
AICc values, the GWR models maintained the same ranking with
Model 1 being best-fitting (AICc¼ 28.08) and increasing to Model 6
as the worst-fitting (AICc¼ 44.93). From the adaptive kernel se-
lection technique, the percentage (number) of neighbors used in
the GWRmodels ranged from 53.64% (18) for Model 3e90% (31) for
Models 1 and 2; furthermore, Models 4, 5, and 6 integrated 83.08%
(28), 59.42% (20), and 61.21% (21) neighbors, respectively. The
standardized partial coefficients (median values) of the GWR
models corroborated covariate directionality established in the OLS
models. Lastly, the six GWR models remediated errors possibly
caused by spatial autocorrelation of input variables, as publicized
by independence of residuals from the Global Moran's I-test.

A key advantage of GWR is that spatial variability in model pa-
rameters can be illustrated to help explain inferential relationships
through geographical study (Shaker et al., 2017). Using negative
and positive 1.65 (a¼ 0.10) as the upper and lower bounds for the
pseudo-t-statistics, maps were created to illustrate local relation-
ships between-natural and built streetscape characteristics- and
mean ambient night temperature forModel 3 (Fig. 7). Directionality
and relative strength of relationships were presented using the
estimated standardized coefficients; albeit, local areas of non-
statistical significance were masked out using the aforemen-
tioned pseudo-t-statistics upper and lower limits. Along with the
local covariates, local R2 values and the local standardized residuals
were illustrated for Model 3 from the GWR evaluation. Unlike OLS,
the spatial pattern of GWR's coefficient of determination (R2) dis-
played local variation; additionally, Model 3 had local R2 values
from 0.36 in the south ascending to 0.71 in the north. Model 3 used
two negative and two positive streetscape characteristics for locally
explaining mean ambient night temperature across the study area.
Based on the pattern of local covariates, mean NDVI had the largest
significant distribution and strongest negative influence on mean
night temperature. Mean NDVI is important for decreasing the UHI
across the study area, other than an area of insignificance in the
southwest. Mean elevation was the other negative predictor of
mean night temperature for Model 3; however, the southern half of
the study area was locally statistically insignificant as illustrated by
the pseudo-t-statistics. Based on the pattern of local covariates, LSI
for roads had the largest significant distribution and strongest
positive influence on mean night temperature. Mean building
height was the other positive predictor of mean night temperature
for Model 3; however, a region in the southern part of the study
areawas locally statistically insignificant as shown by the pseudo-t-
statistics. The results suggest that local covariate significance is
impacted by their synergistic effect on overall model fitness, thus
caution should be taken when interpreting local multivariate
inference. That said, GWR adjusts for spatially autocorrelated var-
iables, allows for local illustration of model predictors, and should
be considered during future UHI studies.



Fig. 7. Local R2 and standardized residuals of the geographically weighted regression (GWR) Model 3 (Table 3); statistically significant spatial patterns of GWR local covariates for
streetscape predictors. Magenta coloring masks out areas of local non-statistical significance using pseudo-t-values (a¼ 0.10). Interpolated surfaces were created using inverse
distance weighting (IDW).
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4.4. Collinearity assessment of key streetscape predictors

From the foregoing bivariate and multiple regression analyses,
14 predictors of mean ambient night temperaturewere assessed for
Table 4
Pearson product-moment correlation coefficients (two-tailed) matrix of the 14most relev
(N¼ 34).

UHI predictor 14 13 12 11 10 9

Description R.LSI R.FRAC R.SHAPE B.COHE. B.CA % Bu

(1) LiDAR mean elevation ̶̶0.01 ̶̶0.53a ̶̶0.55a ̶̶0.27 ̶̶0.13 ̶̶0.10
(2) Sky-view factor (SVF) ̶̶0.18 ̶̶0.25 ̶̶0.21 ̶̶0.43b ̶̶0.65a ̶̶0.66
(3) Mean building height ̶̶0.40b ̶̶0.11 ̶̶0.15 0.66a 0.09 0.11
(4) Mean NDVI 0.05 ̶̶0.43b ̶̶0.41b ̶̶0.17 ̶̶0.44a ̶̶0.56
(5) Percent tree canopy ̶̶0.13 ̶̶0.60a ̶̶0.63a 0.00 ̶̶0.47a ̶̶0.53
(6) Tree SHAPE_AM ̶̶0.20 ̶̶0.38b ̶̶0.38b 0.15 ̶̶0.49a ̶̶0.59
(7) Tree CORE_AM ̶̶0.18 ̶̶0.28 ̶̶0.27 0.09 ̶̶0.48a ̶̶0.58
(8) Tree LPI ̶̶0.20 ̶̶0.34 ̶̶0.34 0.09 ̶̶0.49a ̶̶0.58
(9) Percent buildings 0.10 0.09 0.60 0.29 0.96a 1
(10) Buidings CA 0.20 0.15 0.14 0.39b 1
(11) Buildings COHESION ̶̶0.30 0.10 0.10 1
(12) Roads SHAPE_AM 0.37b 0.98a 1
(13) Roads FRAC_AM 0.39b 1
(14) Roads LSI 1

a Correlation is significant at the 0.01 level.
b Correlation is significant at the 0.05 level.
collinearity ex post facto using a two-tailed Pearson correlation
matrix (Table 4). Between the 14 variables, 34 bivariate relation-
ships recorded statistical significance above the 95% confidence
level and 44 correlations were above the 90% confidence level.
ant statistically significant streetscape predictors of mean ambient night temperature

8 7 6 5 4 3 2 1

ild T.LPI T.CORE T.SHAPE % Tree NDVI B.Height SVF LiDAR

0.47a 0.45a 0.43b 0.55a 0.54a 0.04 0.14 1
a 0.29 0.29 0.30 0.31 0.51a ̶̶0.41b 1

0.32 0.29 0.36b 0.25 ̶̶0.09 1
a 0.74a 0.72a 0.75a 0.80a 1
a 0.85a 0.79a 0.88a 1
a 0.98a 0.96a 1
a 0.99a 1
a 1



Fig. 8. Key land cover class configuration metrics illustrating relationships between
streetscape design and mean ambient night temperature. Identification numbers
correspond to sample site locations in Fig. 1.
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Focusing on the “very” category established in the methods, eight
natural and built streetscape characteristics recorded nine very
positive (>0.75) coefficients; albeit no negative correlation co-
efficients (<e0.75) were recorded at this statistical strength. With
four scores recorded, percent tree canopy exhibited the highest
degree of collinearity across the 14 predictors. SHAPE_AM for tree
canopy, LPI for tree canopy, and CORE_AM for tree canopy all
recorded three very positive scores. Percent buildings, CA for
buildings, FRAC_AM for roads, and SHAPE_AM for roads all recor-
ded one very positive coefficient with another predictor. Note the
eight streetscape characteristics only conveyed a high degree of
collinearity with predictors of the same land cover class. Correla-
tion among landscape measures, especially class configuration
metrics of the same land cover type, can be expected since they
capture some aspect of the landscape mosaic. Although numeri-
cally these streetscape predictors appear redundant, their defini-
tions and interpretations can render different explanations.
Therefore, researchers should use caution when removing pre-
dictors prior to investigating their singular and synergistic re-
lationships with phenomena under study. For this study, the
methodological sequence decreased information loss and opti-
mized UHI knowledge within a complex urban ecosystem.

5. Discussion

5.1. Importance of streetscape predictors

Accurately predicting patterns of urban heat island (UHI) de-
mands knowledge of how natural and human-created landscapes
change weather and climate across spatial and temporal scales. The
streetscape characteristics associated with increased UHI-related
night temperature in New York City (NYC) were linked to both
natural and built causes. Across the modeling techniques used in
this study, human-built streetscape features were found to be
drastically more important than natural features for predicting
mean ambient night temperature. Before delving deeper, it is
important to point out very few landscape features or climate-
related variables remain untouched by humanity. From green-
house gas emissions influencing global climate change, weather
patterns, and sea-level rise, to centuries of re-urbanization in major
urban area, megacities such as NYC have very few biogeochemical
systems that are natural. Of course, natural predictors play an
important role in modeling and understanding the synergistic ef-
fects the urban ecosystem has on UHI. That said, besides elevation,
this study's results highlighted the importance of photosynthesis
activity and configuration and composition of tree canopy for
reducing UHI. The negative correlation between percent tree can-
opy and mean ambient night temperature was expected, and this
finding follows the general cooling effects associated with canopy
shading, leaf reflectance, and evapotranspiration. The stronger
negative correlation between mean normalized difference vegeta-
tion index (NDVI) and mean ambient night temperature was also
expected, since higher NDVI values signify healthier vegetation,
improved photosynthesis, and fuller leaf canopies. Important
research remains on how to maximize NDVI values in urban eco-
systems, but the literature suggests increasing native species (flora
and fauna) richness, complexity, and diversity. Since landscape
compositions lack detailed information needed by engineers, ar-
chitects, urban planners and designers to create solutions in com-
plex urban settings (Leit~ao et al., 2012) configuration metrics were
utilized. Area-weighted mean shape index (SHAPE_AM) for trees
was negatively correlated with mean ambient night temperature.
As this class metric increases tree canopy patches become more
irregular shaped, in comparison to one single maximally compact
tree canopy (i.e., almost square) patch (McGarigal et al., 2012), and
the UHI effect decreases. Lastly, the landscape ecology class metrics
provided valuable insight for naturally decreasing the UHI (Fig. 8),
such as using strategic tree plantings to fill canopy gaps to increase
core areas (CORE_AM) and increase their patch shape complexity
(SHAPE_AM). Given very high economic value of available free
ground in megacities like NYC, retrofitting existing buildings with
green screening and green rooftops will accomplish large-scale UHI
mitigation designs (Santamouris, 2014).

Built streetscape characteristics capturing building and road
morphology were the most dominant predictors of UHI across the
NYC sample sites. From the modeling techniques used, the most
important streetscape predictors of mean ambient night tempera-
ture were building class and road class configuration. Specifically,
two buildings configuration metrics consistently correlated with
ambient night temperature: (i) total class area (CA) and (ii) patch
cohesion index (COHESION). Akin to landscape compositions, CA is
a measure of landscape composition and provides limited infor-
mation useful for creating urban design strategies for sustainable
development planning purposes (Leit~ao et al., 2012). Conversely,
COHESION for buildings provides detailed urban design informa-
tion and correspond with a previously established relationship
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between urban COHESION and ecological well-being at the country
scale (Shaker, 2015). This is important to note, as a fertile area of
research remains for understanding if local landscape patterns
maintain the same effect on processes across spatial scales (Greene
and Kedron, 2018). The positive relationship between COHESION
andmean ambient night temperature signifies that when buildings
are less sub-divided and more physically connected there is greater
UHI effect. Paired with the positive relationships between night
temperature, CA, and mean building height, this information sug-
gests urban planners, designers, and engineers should create
streetscapes that include smaller building footprint areas, which
are of shorter heights, and that are dispersed from each other.
Indeed, new research is needed for assessing tradeoffs between per
capita energy use in buildings and the heat generated by the
buildings themselves, which would help optimize structural design
at specific geography.

The following three noteworthy road configuration metrics
correlated with ambient night temperature: (i) area-weighted
mean of fractal area dimension (FRAC_AM), (ii) landscape shape
index (LSI), and (iii) area-weightedmean shape index (SHAPE_AM).
FRAC_AM values range between 1 and 2, and as the class metric
increases so does road shape complexity across a range of spatial
scales (patch sizes) within a landscape; FRAC approaches 1 for
shapes with very simple perimeters (i.e., squares), and approaches
2 for shapes with highly convoluted, plane-filling perimeters
(McGarigal et al., 2012). The positive correlation between FRAC_AM
andmean ambient night temperature suggests that roads with very
simple perimeters (i.e., squares) are better for dissipating thermal
energy associated with UHI. LSI values are greater than or equal to
1, and as this class metric increases without limit road patches
become more separated; LSI equal 1 when the streetscape consists
of a single maximally compact road (i.e., almost square) patch
(McGarigal et al., 2012). The positive correlation between LSI and
mean ambient night temperature suggests that streetscapes with
fewer amassed roads are better for dissipated thermal energy
associated with UHI then many disaggregated roads. Albeit
numerically cross-correlated with FRAC_AM (Table 4), SHAPE_AM
also recorded a positive correlation with mean ambient night
temperature. SHAPE_AM values record 1 or greater without limit,
and as this class metric increases the road patches become more
irregular shaped; SHAPE_AM equal 1 when the streetscape consists
of a single maximally compact road (i.e., almost square) patch
(McGarigal et al., 2012). These combined findings are novel and
suggest that larger roads-which are fewer, wider, straighter, have
more traffic, and faster traffic speeds-in streetscapes dissipate
thermal energy associated with UHI. Not accepting road configu-
ration to be spurious, erroneous findings may come from ‘top-
down’ remote sensing viewpoints in which tree canopy over hang
other landscape characteristics. Thus, corroborating studies with
‘bottom-up’ approaches and datasets with ‘leaf-off’ or non-remote
sensed data should quickly follow. Lastly, research gaps remain for
investigating how transportation influences thermal heating (i.e.,
engine exhaust), cooling (i.e., automobiles vs road albedo), and
mixing (i.e., traffic speed) in cities.

5.2. Urban resilience planning and design

Cities and their urban populations are exacerbating climate
change, ultimately degrading their local to global life-supporting
ecosystems. While the prospects of urbanization extensively
change depending on the status quo of society (Ahern, 2013),
economy, and environment, current landscape changes brought by
extra-anthropogenic factors such as climate change and sea-level
rise, make adequate design and management of cities addition-
ally relevant (Goudie, 2018). Management of solar radiation,
exposure, and the sheer occupation of urban fabric itself, must be
seenwithin the sustainability paradigm, embedding the integration
of city planning, policy-making and stakeholders as to allow cities
to become cohesively sustainable, beyond the urban fabric itself,
and in lieu of the coherence of its design and sustainable form.
Solutions for heat mitigating land features, such as the occupation
of green facades (P�erez et al., 2017) and urban farms (Ackerman
et al., 2014), should (and frequently in modern developed cities
are) become an integral part of urban environments. Surely the
leading economies and innovation found in megacities will allow
them to lead the way in urban resilience, sustainable development
planning, and innovative design.

Under the tests of population growth, urbanization, and future
climate changes, need continues for sustainable mitigation and
adaptation strategies for UHI effect. The rapid and dramatic
changes of urban cores both in the developing and developed
world, call for methods that highlight beyond the traditional vision
of urban areas. It is the integration of novel methods found in
spatial sciences, where one can address the complexity of infra-
structural challenges together with the cohesive nature of the ur-
ban form (Vaz, 2016). While the problems in the developed and
developing world are intrinsically different within the anthropo-
sphere, it is the vision of integrating tools found in quantitative
spatial sciences that can offer the best solutions given the recent
advances of (i) high-resolution imagery, (ii) capacity of data re-
pository and their historic inventories, as well as (iii) data retrieval
and computation. To use spatial and sustainability sciences to
further understand urban metabolism, where the intricate urban
fabric, energy efficiency, environmental integrity, social equity, and
economic growthmust be improved to achieve greater resilience in
cities and regions (Baccini, 1996; Carre�on and Worrell, 2018). In-
spection of urban heat islands, such as proposed in this study for
New York, poses a novel approach to detailed spatial analytics,
forwarding elegant planning and design solutions for the larger
body of spatial decision support systems (Coutinho-Rodrigues
et al., 2011; Lombardi et al., 2017).

An important yet often unexplored research topic is the spatial
patterns of future urban development and its impacts (Güneralp
et al., 2017). With the significant advances of geospatial technolo-
gies, the study of landscape and land use has become an increas-
ingly refined endeavor (Kushwaha and Mukhopadhyay, 2013). The
necessary push from planning and policymakers to assess land use
change (Olawumi and Chan, 2018) and deterministically under-
stand the impacts on land cover (Vaz et al., 2012), make in the
context of streetscape characteristics fundamental to understand
spatial heterogeneity as well as enhance microscale and mesoscale
modeling applications within urban climate dynamics. From an
economic standpoint, it is the friction of socio-economic vetted
interests that often contradict sustainable development (L�el�e,
1991), which may lead to strenuous interactions between urban
cores and their supporting particularities in rapidly changing cities
(Arsanjani et al., 2013). Having a rigorous quantification of the fine-
grained spatial scale (Zambon et al., 2018) may provide a more
holistic understanding of the topologic relations of spatial-urban
interactions (Turner et al., 1989), ultimately leading to more func-
tional cities (Grimm et al., 2008; Pickett et al., 2011). Streetscape
predictors should examine the compounds of the complexity of
heat factors, as to reconsider in the planning structure the inte-
gration for well-being that should be implicit in any sustainable city
(Spokane et al., 2007). Beyond streetscape metrics lies thus the
potential to integrate smarter energy usage of urban regions, while
considering the multi-tiered complexity brought by the juggling
aspects of built-environment, road networks, and the panoply of
actors within the urban ecosystem.
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6. Conclusions

Cities experience the urban heat island (UHI), which continue to
pose challenges for humanity's increasingly urban population. The
NYC Panel on Climate Change (NYCPCC, 2015) announced that its
growing city is becoming increasingly vulnerable to sea level rise,
can expect increased precipitation and coastal flooding, and will
likely experience more frequent and intense heat waves. In
response, PlaNYC (NYC, 2007) was launched in 2007 as a long-
range economic and environmental sustainability plan incorpo-
rating ten policy areas. In 2015 PlaNYC transitioned to OneNYC
(NYC, 2015) with the ambitious goal of making NYC the most
resilient, equitable, and sustainable city in the world. Although
development progress has been made through these initiates (NYC,
2018), work remains for scientists to help NYC prepare for a
warming world (Rosenzweig et al., 2010). As such, this paper adds
to the UHI, urban sustainable, planning and design literature in
several ways by fulfilling its three guiding objectives. It began by
using the rarely assessed but most ideal urban canopy layer (UCL)
temperature data to illustrate NYC's UHI and to evaluate natural
and built streetscape characteristics. Next, one of the most detailed
(0.914m resolution) and accurate (96%) land cover data set avail-
able was used for capturing landscape composition, configuration,
and diversity; furthermore, assessing a more complete set of
landscape predictors never before seen in one UHI study. In UHI
context, it showcased rarely used spatial analysis methods sensitive
to spatial autocorrelation for corroborating traditional global
(without spatial reference) statistical techniques. Lastly, this study
provided novel and informative results from freely available tem-
perature and landscape data.

Streetscapes are highly couple socio-ecological systems, which
need new approaches and understanding for establishing sustain-
able urbanization. First, in order to assess the spatial pattern of
mean ambient night temperature across 34 streetscapes in NYC,
global and local statistical methods were employed. Specifically, a
Paired Sample T-Test determined that there was a significant dif-
ference between the coldest and warmest night temperature lo-
cations. Global Moran's I-test corroborated spatial autocorrelation
of mean night temperature, as with many of the natural and built
streetscape predictors. To illustrate NYC's UHI across the study area,
ordinary kriging was used to interpolate a predicted surface of UCL
temperatures recorded across 34 weather stations, and Local Getis-
Ord Gi* (Getis and Ord, 1992) was used to map statistically signif-
icant “hot spots” and “cold spots” of those data. Second, various
inferential statistical models were established to uncover which of
the 90 þ natural and built streetscape characteristics were most
capable of predicting mean ambient night temperature. Specif-
ically, Pearson's correlation test (r), ordinary least squares (OLS)
regression, and geographically weighted regression (GWR) were
used as modeling tools for this study. Although spatial autocorre-
lation was reported and corrected for, the inferential relationships
between-natural and built streetscape characteristics- and mean
ambient night temperature held true across all methods. Global
inferential tests revealed that sky-view factor, photosynthesis ac-
tivity, elevation, and road configuration were the strongest pre-
dictors of mean ambient night temperature. Six multiple regression
models were ultimately made, with GWR fitting the UHI aptly
(R2¼ 65e74%). Third, GWRwas used to illustrate and evaluate local
patterns of correlated associations from a key model with four key
explanatory variables. Pointedly, important explanatory covariates
were illustrated using local pseudo-t statistics and linked to mean
ambient night temperature, supporting the importance of GWR for
understanding local UHI interactions. Although the GWR findings
cannot be assigned to other geographic locations, the corroborating
inferential findings can be related to streetscapes of similar
geography, climate, and urban morphology.
Eliminating UHI is requisite for creating urban sustainability.

NYC has a strong foundation for urban sustainability, with original
“seers” such asWilliamWhyte, Jane Jacob, and IanMcHarg all using
it as their living-laboratory to create more habitable and sustain-
able cities (McPhearson, 2011). That said, UHI is the reason of
roughly 1/3 of entire warming NYC has experienced during the
20th century (Gaffin et al., 2008), and much work remains for
remediating this anthropogenic climate alteration. In order to
create resilient and sustainable cities it is important to not be one
dimension, to be mindful of tradeoffs and synergies that occur
when optimizing coupled human-environmental systems. In this
regard, Meerow and Newell (2017) suggested using stakeholder-
weighted spatial planning of green infrastructure that combine
six advantages: 1) air quality; 2) green space; 3) landscape con-
nectivity; 4) social vulnerability; 5) stormwater management; and
6) urban heat island amelioration. Although “ecological land-use
complementation” (Colding, 2007) is central for restoring
ecosystem processes essential for supporting biodiversity, such as
connecting greenspace across urban parks and rooftops, much re-
mains for engineers, architects, urban planners and designers to
create multidimensional solutions that address all three spheres of
sustainability (economic growth, social equity, environmental
integrity) in complex urban settings. Fortunately, the results
confirm that landscape configuration metrics are stronger pre-
dictors of mean ambient night temperature than composition
measures, which provide detailed information useful to practi-
tioners for remediating negative effects associated with UHI.
Streetscape design, particularly road patterns and process, requires
more considerationwhen attempting to mitigate UHI during future
sustainability planning, urban renewal projects, and research. That
said, data sets and research tools are likely not the preventive
factors for advancing cities toward their sustainable urbanization
goals. Rather it is conflicting governance of increasingly vulnerable
growing populations within geographically restricted, dense,
overpopulated urban environments. By exploring UHI in NYC, and
its correlations with many built and natural streetscape charac-
teristics, applied insight useful for improving urban ecological
integrity, resilience and sustainable urbanizationwasmade. In sum,
studies like this one help to provide cities empirically supported
planning and design strategies for moving humanity closer to
destination sustainability.
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